among the many startling discoveries of the application of universal physical principles to the organization of the visible world found in the scientific investigations of Plato and his associates, was the recognition of the unique constructability of the five regular (Platonic) solids. The most important aspect of this discovery did not lie in the visible world, however, but in the necessary implications for the existence of what Carl Gauss would call the “complex domain” two millennia later.

The proof that no other regular solids but these—the pyramid, cube, octahedron, dodecahedron, and icosahedron—could be constructed in visible space, was tantamount to the assertion that, contrary to textbook Euclideanism or the dead world of Isaac Newton, physical space was not “empty,” but instead shaped by unseen boundary conditions inherent in the possibilities of physical action. What appear to be the axioms, definitions, and postulates of mathematics, must yield to the causal relations of physics; in fact, the very proof of the uniqueness of the Platonic solids—one of the greatest achievements of Greek geometry, which required the development of a theory of proportions able to deal with incommensurable species of magnitudes (powers)—represented, paradoxically, a complete overturning of the method of deductive (logical) proof upon which it was based.

Although Plato presents these issues directly in his *Timaeus*, they are also embedded at the heart of the *Republic*, in the twinned metaphors of The Cave and Divided Line. Here, we see that what we know truly, we know metaphorically—but only by reference to an unseen *Power* which animates and unifies the more immediate aspects of our experience.

—Ken Kronberg

The Platonic Solids

A mong the many startling discoveries of the application of universal physical principles to the organization of the visible world found in the scientific investigations of Plato and his associates, was the recognition of the unique constructability of the five regular (Platonic) solids. The most important aspect of this discovery did not lie in the visible world, however, but in the necessary implications for the existence of what Carl Gauss would call the “complex domain” two millennia later.

The proof that no other regular solids but these—the pyramid, cube, octahedron, dodecahedron, and icosahedron—could be constructed in visible space, was tantamount to the assertion that, contrary to
BOY: How is that?

HERDSMAN: Before man conceived of a ship, we had no way to explore the planet and discover what else there was, including the discovery and colonization of our Greek islands by ancient seafaring cultures. With ships, the pilot’s art was given birth—the essence of which lies in more than just how to steer a ship.

BOY: But isn’t that the essence of the pilot’s art? How to steer a ship, insofar as is best?

HERDSMAN: And by “best,” would you mean any way that would get you somewhere, or the most direct way to get where you intended to go?

BOY: The latter, of course.

HERDSMAN: Then, as one final exercise, I would like you to imagine yourself in the middle of the ocean. What do you see when you look around?

BOY: I see water, in every direction I look.

HERDSMAN: So, if you want to go to some island directly east of you, which way do you steer?

BOY: Well, I know where the North Star is, so I just keep going in the direction to my right when I face the North Star.

HERDSMAN: And, if you were going slightly northeast or slightly southeast, how would you know?

BOY: Well, I don’t know.

HERDSMAN: Or, if you were going a lot northeast, or a lot southeast, then probably you would miss the island you were aiming for?

BOY: I suppose, then, that you are going to tell me that there is something more to the astronomy of the pilot’s art, than simply knowing where to find the North Star?

HERDSMAN: First off, there are problems with trying to map out the activity of a sphere, onto a flat plane of papyrus. These mappings explode at the edges of the map, where they start to lose all accuracy the closer you get to the edge. But, Platon rediscovered the lost method of mapping the sphere onto the plane, with his now-famous regular divisions of the sphere.

BOY: I would like to know more about that.

HERDSMAN: Then you should try to figure them out for yourself, on your own, and maybe they will accept you into the Academy at Athens.

BOY: Regular solids, huh? But, that still doesn’t explain how pilots can go east or west without missing their targets.

HERDSMAN: If the pilot goes too far north or too far south, what do you think happens to the North Star’s position in the sky? If you watch it from here every night, it will appear to always be in the same position, wobbling a little here or there, but always in the same position, with the rest of the stars circling around it. However, if we travelled south to Alexandria, it would drop a bit in the sky.

BOY: How can that be?

HERDSMAN: Well, imagine that the Earth is a sphere, and that the North Star was very, very far away. What would happen as you moved along the surface of the sphere toward the top?

BOY: What do you mean by “top”? I thought you said a sphere.

HERDSMAN: A rotating sphere always spinning.

BOY: Then, by “top,” I guess you mean one of those two